Search results
Results from the WOW.Com Content Network
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [1] for an idealized simple pendulum is, approximately,
The above expression makes clear that the uncertainty coefficient is a normalised mutual information I(X;Y). In particular, the uncertainty coefficient ranges in [0, 1] as I(X;Y) < H(X) and both I(X,Y) and H(X) are positive or null. Note that the value of U (but not H!) is independent of the base of the log since all logarithms are proportional.
The Generalized Uncertainty Principle (GUP) represents a pivotal extension of the Heisenberg Uncertainty Principle, incorporating the effects of gravitational forces to refine the limits of measurement precision within quantum mechanics. Rooted in advanced theories of quantum gravity, including string theory and loop quantum gravity, the GUP ...
Indeed, introductory physics texts on quantum mechanics often gloss over mathematical technicalities that arise for continuous-valued observables and infinite-dimensional Hilbert spaces, such as the distinction between bounded and unbounded operators; questions of convergence (whether the limit of a sequence of Hilbert-space elements also ...
Relative uncertainty is the measurement uncertainty relative to the magnitude of a particular single choice for the value for the measured quantity, when this choice is nonzero. This particular single choice is usually called the measured value, which may be optimal in some well-defined sense (e.g., a mean, median, or mode). Thus, the relative ...
where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.
The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle—between them. In mathematical terms, conjugate variables are part of a symplectic basis , and the uncertainty relation corresponds to the symplectic form .
The Planckian form is recommended for use in calculating uncertainty budgets for radiation thermometry [3] and infrared thermometry. [7] It is also recommended for use in calibration of radiation thermometers below the silver point. [3] The Planckian form resembles Planck's law.