Search results
Results from the WOW.Com Content Network
If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...
Likewise, a greatest element of a partially ordered set (poset) is an upper bound of the set which is contained within the set, whereas a maximal element m of a poset A is an element of A such that if m ≤ b (for any b in A), then m = b. Any least element or greatest element of a poset is unique, but a poset can have several minimal or maximal ...
13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...
The question whether there exists a finite upper bound H(n) for the number of limit cycles of planar polynomial vector fields of degree n remains unsolved for any n > 1. (H(1) = 0 since linear vector fields do not have limit cycles.) Evgenii Landis and Ivan Petrovsky claimed a solution in the 1950s, but it was shown wrong in the early 1960s.