enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. printf - Wikipedia

    en.wikipedia.org/wiki/Printf

    printf is a C standard library function that formats text and writes it to standard output. The name, printf is short for print formatted where print refers to output to a printer although the functions are not limited to printer output. The standard library provides many other similar functions that form a family of printf-like functions.

  3. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    3f80 = 0 01111111 0000000 = 1 c000 = 1 10000000 0000000 = −2 7f7f = 0 11111110 1111111 = (2 8 − 1) × 27 × 2 127 ≈ 3.38953139 × 10 38 (max finite positive value in bfloat16 precision) 0080 = 0 00000001 0000000 = 2 −126 ≈ 1.175494351 × 10 −38 (min normalized positive value in bfloat16 precision and single-precision floating point)

  4. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  5. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as follows:

  6. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    The advantage of decimal floating-point representation over decimal fixed-point and integer representation is that it supports a much wider range of values. For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point ...

  7. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    ARM processors support (via a floating-point control register bit) an "alternative half-precision" format, which does away with the special case for an exponent value of 31 (11111 2). [10] It is almost identical to the IEEE format, but there is no encoding for infinity or NaNs; instead, an exponent of 31 encodes normalized numbers in the range ...

  8. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Given the hexadecimal representation 3FD5 5555 5555 5555 16, Sign = 0 Exponent = 3FD 16 = 1021 Exponent Bias = 1023 (constant value; see above) Fraction = 5 5555 5555 5555 16 Value = 2 (Exponent − Exponent Bias) × 1.Fraction – Note that Fraction must not be converted to decimal here = 22 × (15 5555 5555 5555 16 × 2 −52) = 2 −54 ...

  9. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    The use of decimal when talking about binary is unfortunate because most decimal fractions are recurring sequences in binary just as ⁠ 2 / 3 ⁠ is in decimal. Thus, a value such as 10.15, is represented in binary as equivalent to 10.1499996185 etc. in decimal for REAL*4 but 10.15000000000000035527 etc. in REAL*8: inter-conversion will ...