Search results
Results from the WOW.Com Content Network
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
In Einstein notation (implicit summation over repeated index), contravariant components are denoted with upper indices as in = A covector or cotangent vector has components that co-vary with a change of basis in the corresponding (initial) vector space. That is, the components must be transformed by the same matrix as the change of basis matrix ...
In Feynman subscript notation, = + where the notation ∇ B means the subscripted gradient operates on only the factor B. [ 1 ] [ 2 ] Less general but similar is the Hestenes overdot notation in geometric algebra . [ 3 ]
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del. The notation grad f is also commonly used to ...
The Standard Model of elementary particles is a gauge theory based on the group SU(3) × SU(2) × U(1), in which all anomalies exactly cancel. [ 1 ] : 705–707 The theoretical foundation of general relativity , the equivalence principle , can also be understood as a form of gauge symmetry, making general relativity a gauge theory based on the ...
Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.
The free Euler equations are conservative, in the sense they are equivalent to a conservation equation: + =, or simply in Einstein notation: + =, where the conservation quantity in this case is a vector, and is a flux matrix. This can be simply proved.
Expressions in the notation of the Ricci calculus may generally be interpreted as a set of simultaneous equations relating the components as functions over a manifold, usually more specifically as functions of the coordinates on the manifold. This allows intuitive manipulation of expressions with familiarity of only a limited set of rules.