Search results
Results from the WOW.Com Content Network
The +M effect, also known as the positive mesomeric effect, occurs when the substituent is an electron donating group. The group must have one of two things: a lone pair of electrons, or a negative charge. In the +M effect, the pi electrons are transferred from the group towards the conjugate system, increasing the density of the system.
However, another effect that plays a role is the +M effect which adds electron density back into the benzene ring (thus having the opposite effect of the -I effect but by a different mechanism). This is called the mesomeric effect (hence +M) and the result for fluorine is that the +M effect approximately cancels out the -I effect.
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
The data also show that for these substituents, the meta effect is much larger than the para effect, due to the fact that the mesomeric effect is greatly reduced in a meta substituent. With meta substituents a carbon atom bearing the negative charge is further away from the carboxylic acid group (structure 2b).
Included in that class are substances containing a phenolic ring and an organic carboxylic acid function (C6-C1 skeleton). Two important naturally occurring types of phenolic acids are hydroxybenzoic acids and hydroxycinnamic acids, which are derived from non-phenolic molecules of benzoic and cinnamic acid, respectively. [1]
A simple example is provided by the effect of replacing the hydrogen atoms in acetic acid by the more electronegative chlorine atom. The electron-withdrawing effect of the substituent makes ionisation easier, so successive p K a values decrease in the series 4.7, 2.8, 1.4, and 0.7 when 0, 1, 2, or 3 chlorine atoms are present. [ 49 ]
The simplest is phenol, C 6 H 5 OH. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule. Phenol – the simplest of the phenols Chemical structure of salicylic acid, the active metabolite of aspirin. Phenols are both synthesized industrially and produced by plants and ...
It is often said the resonance stability of phenol makes it a stronger acid than that of aliphatic alcohols such as ethanol (pK a = 10 vs. 16–18). However, a significant contribution is the greater electronegativity of the sp 2 alpha carbon in phenol compared to the sp 3 alpha carbon in aliphatic alcohols. [7]