enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...

  3. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    As defined above, the Huber loss function is strongly convex in a uniform neighborhood of its minimum =; at the boundary of this uniform neighborhood, the Huber loss function has a differentiable extension to an affine function at points = and =. These properties allow it to combine much of the sensitivity of the mean-unbiased, minimum-variance ...

  4. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  5. Category:Loss functions - Wikipedia

    en.wikipedia.org/wiki/Category:Loss_functions

    Download QR code; Print/export Download as PDF; Printable version; ... move to sidebar hide. Help. Pages in category "Loss functions" The following 11 pages are in ...

  6. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    This is also known as the log loss (or logarithmic loss [4] or logistic loss); [5] the terms "log loss" and "cross-entropy loss" are used interchangeably. [ 6 ] More specifically, consider a binary regression model which can be used to classify observations into two possible classes (often simply labelled 0 {\displaystyle 0} and 1 ...

  7. Triplet loss - Wikipedia

    en.wikipedia.org/wiki/Triplet_loss

    The loss function is defined using triplets of training points of the form (,,).In each triplet, (called an "anchor point") denotes a reference point of a particular identity, (called a "positive point") denotes another point of the same identity in point , and (called a "negative point") denotes an point of an identity different from the identity in point and .

  8. Anthony Richardson's 2-point conversion run with 12 seconds ...

    www.aol.com/sports/anthony-richardsons-2-point...

    The loss squandered one of Maye's best performances in his rookie season. He completed 24-of-30 passes for 238 yards with a touchdown and an interception. Drake Maye runs 41 YARDS!

  9. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    [1] It's also important to apply feature scaling if regularization is used as part of the loss function (so that coefficients are penalized appropriately). Empirically, feature scaling can improve the convergence speed of stochastic gradient descent. In support vector machines, [2] it can reduce the time to find support vectors. Feature scaling ...