enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. Frobenius matrix - Wikipedia

    en.wikipedia.org/wiki/Frobenius_matrix

    They are used in the process of Gaussian elimination to represent the Gaussian transformations. If a matrix is multiplied from the left (left multiplied) with a Gauss transformation matrix, a linear combination of the preceding rows is added to the given row of the matrix (in the example shown above, a linear combination of rows 1 and 2 will be ...

  4. Disquisitiones Arithmeticae - Wikipedia

    en.wikipedia.org/wiki/Disquisitiones_Arithmeticae

    Disquisitiones Arithmeticae (Latin for Arithmetical Investigations) is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the field truly rigorous and systematic and paved the path for modern number theory.

  5. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  6. The Nine Chapters on the Mathematical Art - Wikipedia

    en.wikipedia.org/wiki/The_Nine_Chapters_on_the...

    The solution method called "Fang Cheng Shi" is best known today as Gaussian elimination. Among the eighteen problems listed in the Fang Cheng chapter, some are equivalent to simultaneous linear equations with two unknowns, some are equivalent to simultaneous linear equations with 3 unknowns, and the most complex example analyzes the solution to ...

  7. Bruhat decomposition - Wikipedia

    en.wikipedia.org/wiki/Bruhat_decomposition

    In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) = of certain algebraic groups = into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases.

  8. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.

  9. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix.The elementary matrices generate the general linear group GL n (F) when F is a field.