Search results
Results from the WOW.Com Content Network
In organic chemistry, Zaytsev's rule (or Zaitsev's rule, Saytzeff's rule, Saytzev's rule) is an empirical rule for predicting the favored alkene product(s) in elimination reactions. While at the University of Kazan , Russian chemist Alexander Zaytsev studied a variety of different elimination reactions and observed a general trend in the ...
In organic chemistry, regioselectivity is the preference of chemical bonding or breaking in one direction over all other possible directions. [1] [2] It can often apply to which of many possible positions a reagent will affect, such as which proton a strong base will abstract from an organic molecule, or where on a substituted benzene ring a further substituent will be added.
The stoichiometry and idealized regiochemistry of hydroboration of terminal alkenes follows: BH 3 + 3 RCH=CH 2 → B(CH 2 −CH 2 R) 3. In reality, each hydroboration step follows 1,2-addition but ca. 4% gives the 2,1 addition (affording the B(CH(CH3)R isomer). [1] In extreme cases, such as risubstituted alkenes, hydroboration affords.
In organic chemistry, syn-and anti-addition are different ways in which substituent molecules can be added to an alkene (R 2 C=CR 2) or alkyne (RC≡CR).The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.
The regiochemistry of the halogenation of alkanes is largely determined by the relative weakness of the C–H bonds. This trend is reflected by the faster reaction at tertiary and secondary positions. Free radical chlorination is used for the industrial production of some solvents: [2] CH 4 + Cl 2 → CH 3 Cl + HCl
Alkyl and aryl terminal alkenes react with high regioselectivity to give 5-substituted isoxazolidines. This outcome is consistent with frontier molecular orbital (kinetic) control of the distribution of isomers: the nitrone oxygen, which possesses the largest orbital coefficient in the HOMO of the nitrone, forms a bond with the inner carbon of the alkene, which possesses the largest orbital ...
A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes. [ 1 ] [ 2 ] [ 3 ] If the two carbon atoms at the double bond are linked to a different number of hydrogen atoms, the halogen is found preferentially at the carbon with fewer ...
In organosulfur chemistry, the thiol-ene reaction (also alkene hydrothiolation) is an organic reaction between a thiol (R−SH) and an alkene (R 2 C=CR 2) to form a thioether (R−S−R'). This reaction was first reported in 1905, [ 1 ] but it gained prominence in the late 1990s and early 2000s for its feasibility and wide range of applications.