Search results
Results from the WOW.Com Content Network
Dyneema Composite Fabric (DCF) is a laminated material consisting of a grid of Dyneema threads sandwiched between two thin transparent polyester membranes. This material is very strong for its weight, and was originally developed for use in racing yacht sails under the name 'Cuben Fiber'.
Dyneema Composite Fabric (DCF), also known as Cuben Fiber (CTF3), is a high-performance non-woven composite material used in high-strength, low-weight applications. It is constructed from a thin sheet of ultra-high-molecular-weight polyethylene ( UHMWPE , "Dyneema") laminated between two sheets of polyester .
Dyneema, a braided Ultra High Molecular Weight Polyethylene (UHMWPE) line, and the identically structured line, Spectra, are stronger and lighter than Kevlar for a given diameter. One of the most important characteristics of line for high altitude kite flying is small diameter and high strength to weight ratio.
Kevlar (para-aramid) [2] is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora.Developed by Stephanie Kwolek at DuPont in 1965, [3] [2] [4] the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires.
Webbing is a strong fabric woven as a flat strip or tube of varying width and fibres, often used in place of rope. It is a versatile component used in climbing , slacklining , furniture manufacturing , automobile safety , auto racing , towing , parachuting , military apparel , load securing , and many other fields.
M5 has a tensile strength of 4 GPa [1] to 9.5GPa. [2] Other aramids- (such as Kevlar and Twaron) or UHMWPE-fibres (such as Dyneema and Spectra) range from 2.2 to 3.9 GPa. [3]M5 has "very high levels" of fire resistance, flame retardancy, and chemical resistance, especially high for an organic fiber.
To emphasize the point, consider the issue of choosing a material for building an airplane. Aluminum seems obvious because it is "lighter" than steel, but steel is stronger than aluminum, so one could imagine using thinner steel components to save weight without sacrificing (tensile) strength.
Zylon body armor panels sometimes cost twice as much as Kevlar or 35% more than other advanced materials. [9] Despite "sticker shock", the marketing for Zylon body armor described incredibly low weight and thickness, but shockingly high protection, causing some to refer to it as a "miracle fiber".