enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    The transitivity of M implies that the integers and integer sequences inside M are actually integers and sequences of integers. An integer sequence is a definable sequence relative to M if there exists some formula P ( x ) in the language of set theory, with one free variable and no parameters, which is true in M for that integer sequence and ...

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    A positive integer that can be written as the sum of two or more consecutive positive integers. A138591: ErdÅ‘s–Nicolas numbers: 24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, ... A number n such that there exists another number m and , =. A194472: Solution to Stepping Stone Puzzle

  4. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    An AP-k can be written as k primes of the form a·n + b, for fixed integers a (called the common difference) and b, and k consecutive integer values of n. An AP-k is usually expressed with n = 0 to k − 1. This can always be achieved by defining b to be the first prime in the arithmetic progression.

  5. Polite number - Wikipedia

    en.wikipedia.org/wiki/Polite_number

    In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite . [ 1 ] [ 2 ] The impolite numbers are exactly the powers of two , and the polite numbers are the natural numbers that are not powers of two.

  6. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks.. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence.

  7. Pronic number - Wikipedia

    en.wikipedia.org/wiki/Pronic_number

    A pronic number is a number that is the product of two consecutive integers, that is, a number of the form (+). [1] The study of these numbers dates back to Aristotle.They are also called oblong numbers, heteromecic numbers, [2] or rectangular numbers; [3] however, the term "rectangular number" has also been applied to the composite numbers.

  8. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers, numbers that are the product of two consecutive integers. Yet another way to classify composite numbers is to determine whether all prime factors are either all below or all above some fixed (prime) number.

  9. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8.