Search results
Results from the WOW.Com Content Network
Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere-differentiable. The Weierstrass function was one of the first fractals studied, although this term was not used until much later. The ...
Also, symmetric differentiability implies symmetric continuity, but the converse is not true just like usual continuity does not imply differentiability. The set of the symmetrically continuous functions, with the usual scalar multiplication can be easily shown to have the structure of a vector space over R {\displaystyle \mathbb {R ...
In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. [2]
The translation in the language of neighborhoods of the (,)-definition of continuity leads to the following definition of the continuity at a point: A function f : X → Y {\displaystyle f:X\to Y} is continuous at a point x ∈ X {\displaystyle x\in X} if and only if for any neighborhood V of f ( x ) {\displaystyle f(x)} in Y , there is a ...
A continuity equation is the mathematical way to express this kind of statement. For example, the continuity equation for electric charge states that the amount of electric charge in any volume of space can only change by the amount of electric current flowing into or out of that volume through its boundaries.
A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...
Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...
Continuity in the Eulerian description is expressed by the spatial and temporal continuity and continuous differentiability of the flow velocity field. All physical quantities are defined this way at each instant of time, in the current configuration, as a function of the vector position x {\displaystyle \mathbf {x} } .