enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Born rule - Wikipedia

    en.wikipedia.org/wiki/Born_rule

    The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a given position is proportional to the square of the amplitude of the system's wavefunction at that position.

  3. Copenhagen interpretation - Wikipedia

    en.wikipedia.org/wiki/Copenhagen_interpretation

    Quantum mechanics is intrinsically indeterministic. The correspondence principle: in the appropriate limit, quantum theory comes to resemble classical physics and reproduces the classical predictions. The Born rule: the wave function of a system yields probabilities for the outcomes of measurements upon that system.

  4. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.

  5. Measurement in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Measurement_in_quantum...

    The old quantum theory is a collection of results from the years 1900–1925 [23] which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. [24] The theory is now understood as a semi-classical approximation [25] to modern quantum mechanics. [26]

  6. Gleason's theorem - Wikipedia

    en.wikipedia.org/wiki/Gleason's_theorem

    In mathematical physics, Gleason's theorem shows that the rule one uses to calculate probabilities in quantum physics, the Born rule, can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality.

  7. Update rule - Wikipedia

    en.wikipedia.org/wiki/Update_rule

    Update rules I and II, that is the Born rule and the state update or collapse rule, in quantum mechanics Topics referred to by the same term This disambiguation page lists articles associated with the title Update rule .

  8. Unitarity (physics) - Wikipedia

    en.wikipedia.org/wiki/Unitarity_(physics)

    In quantum mechanics, every state is described as a vector in Hilbert space. When a measurement is performed, it is convenient to describe this space using a vector basis in which every basis vector has a defined result of the measurement – e.g., a vector basis of defined momentum in case momentum is measured. The measurement operator is ...

  9. Quantum non-equilibrium - Wikipedia

    en.wikipedia.org/wiki/Quantum_non-equilibrium

    In quantum mechanics, the Born rule states that the probability density of finding a system in a given state, when measured, is proportional to the square of the amplitude of the system's wavefunction at that state, and it constitutes one of the fundamental axioms of the theory.