Search results
Results from the WOW.Com Content Network
Siegel–Tukey test, named after Sidney Siegel and John Tukey, is a non-parametric test which may be applied to data measured at least on an ordinal scale. It tests for differences in scale between two groups. The test is used to determine if one of two groups of data tends to have more widely dispersed values than the other.
Cochran's test is a non-parametric statistical test to verify whether k treatments have identical effects in the analysis of two-way randomized block designs where the response variable is binary. [ 1 ] [ 2 ] [ 3 ] It is named after William Gemmell Cochran .
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
The wider applicability and increased robustness of non-parametric tests comes at a cost: in cases where a parametric test's assumptions are met, non-parametric tests have less statistical power. In other words, a larger sample size can be required to draw conclusions with the same degree of confidence.
In recent years, the Lepage statistic is a widely used statistical process for monitoring and quality control. In 2012, Amitava Mukherjee and Subhabrata Chakraborti introduced a distribution-free Shewhart-type Phase-II monitoring scheme [8] (control chart) for simultaneously monitoring of location and scale parameter of a process using a test sample of fixed size, when a reference sample of ...
In statistics, the Brunner Munzel test [1] [2] [3] (also called the generalized Wilcoxon test) is a nonparametric test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1] The one-sample version serves a purpose similar to that of the one-sample Student's t-test. [2]
The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.