Search results
Results from the WOW.Com Content Network
In power iteration, for example, the eigenvector is actually computed before the eigenvalue (which is typically computed by the Rayleigh quotient of the eigenvector). [11] In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11]
The first principal eigenvector of the graph is also referred to merely as the principal eigenvector. The principal eigenvector is used to measure the centrality of its vertices. An example is Google's PageRank algorithm. The principal eigenvector of a modified adjacency matrix of the
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The Courant minimax principle, as well as the maximum principle, can be visualized by imagining that if ||x|| = 1 is a hypersphere then the matrix A deforms that hypersphere into an ellipsoid. When the major axis on the intersecting hyperplane are maximized — i.e., the length of the quadratic form q ( x ) is maximized — this is the ...
Matrix V, also of dimension p × p, contains p column vectors, each of length p, which represent the p eigenvectors of the covariance matrix C. The eigenvalues and eigenvectors are ordered and paired. The jth eigenvalue corresponds to the jth eigenvector. Matrix V denotes the matrix of right eigenvectors (as opposed to left eigenvectors). In ...
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.
Rellich draws the following important consequence. << Since in general the individual eigenvectors do not depend continuously on the perturbation parameter even though the operator () does, it is necessary to work, not with an eigenvector, but rather with the space spanned by all the eigenvectors belonging to the same eigenvalue. >>
As stated in the introduction, for any vector x, one has (,) [,], where , are respectively the smallest and largest eigenvalues of .This is immediate after observing that the Rayleigh quotient is a weighted average of eigenvalues of M: (,) = = = = where (,) is the -th eigenpair after orthonormalization and = is the th coordinate of x in the eigenbasis.