Search results
Results from the WOW.Com Content Network
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
Adaptive histogram equalization (AHE) is a computer image processing technique used to improve contrast in images. It differs from ordinary histogram equalization in the respect that the adaptive method computes several histograms, each corresponding to a distinct section of the image, and uses them to redistribute the lightness values of the image.
An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]
Image is licensed under the GFDL: I, the copyright holder of this work, hereby publish it under the following licenses: Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant ...
In image processing, the balanced histogram thresholding method (BHT), [1] is a very simple method used for automatic image thresholding. Like Otsu's Method [ 2 ] and the Iterative Selection Thresholding Method , [ 3 ] this is a histogram based thresholding method.
Histogram equalization is a popular example of these algorithms. Improvements in picture brightness and contrast can thus be obtained. In the field of computer vision, image histograms can be useful tools for thresholding. Because the information contained in the graph is a representation of pixel distribution as a function of tonal variation ...
For example, applying a histogram equalization directly to the channels in an RGB image would alter the color balance of the image. Instead, the histogram equalization is applied to the Y channel of the YIQ or YUV representation of the image, which only normalizes the brightness levels of the image.
Multi-block LBP: the image is divided into many blocks, a LBP histogram is calculated for every block and concatenated as the final histogram. Volume Local Binary Pattern(VLBP): [11] VLBP looks at dynamic texture as a set of volumes in the (X,Y,T) space where X and Y denote the spatial coordinates and T denotes the frame index. The neighborhood ...