Search results
Results from the WOW.Com Content Network
Quantitative uses of the terms uncertainty and risk are fairly consistent among fields such as probability theory, actuarial science, and information theory. Some also create new terms without substantially changing the definitions of uncertainty or risk. For example, surprisal is a variation on uncertainty sometimes used in information theory ...
Uncertainty propagation is the quantification of uncertainties in system output(s) propagated from uncertain inputs. It focuses on the influence on the outputs from the parametric variability listed in the sources of uncertainty. The targets of uncertainty propagation analysis can be:
The uncertainty has two components, namely, bias (related to accuracy) and the unavoidable random variation that occurs when making repeated measurements (related to precision). The measured quantities may have biases , and they certainly have random variation , so what needs to be addressed is how these are "propagated" into the uncertainty of ...
The term 'random variable' in its mathematical definition refers to neither randomness nor variability [2] but instead is a mathematical function in which the domain is the set of possible outcomes in a sample space (e.g. the set { H , T } {\displaystyle \{H,T\}} which are the possible upper sides of a flipped coin heads H {\displaystyle H} or ...
When there are two independent causes of variability capable of producing in an otherwise uniform population distributions with standard deviations and , it is found that the distribution, when both causes act together, has a standard deviation +. It is therefore desirable in analysing the causes of variability to deal with the square of the ...
In the age of big data, uncertainty or data veracity is one of the defining characteristics of data. Data is constantly growing in volume, variety, velocity and uncertainty (1/veracity). Uncertain data is found in abundance today on the web, in sensor networks, within enterprises both in their structured and unstructured sources.
Uncertainty is traditionally modelled by a probability distribution, as developed by Kolmogorov, [1] Laplace, de Finetti, [2] Ramsey, Cox, Lindley, and many others.However, this has not been unanimously accepted by scientists, statisticians, and probabilists: it has been argued that some modification or broadening of probability theory is required, because one may not always be able to provide ...
Relative uncertainty is the measurement uncertainty relative to the magnitude of a particular single choice for the value for the measured quantity, when this choice is nonzero. This particular single choice is usually called the measured value, which may be optimal in some well-defined sense (e.g., a mean, median, or mode). Thus, the relative ...