Search results
Results from the WOW.Com Content Network
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne (−C≡CH) is added to a carbonyl group (C=O) to form an α-alkynyl alcohol (R 2 C(−OH)−C≡C−R). [1] [2] When the acetylide is formed from acetylene (HC≡CH), the reaction gives an α-ethynyl alcohol. This process is often referred to as ethynylation.
Terminal alkynes have the formula RC≡CH, where at least one end of the alkyne is a hydrogen atom. An example is methylacetylene (propyne using IUPAC nomenclature). They are often prepared by alkylation of monosodium acetylide. [4] Terminal alkynes, like acetylene itself, are mildly acidic, with pK a values of around 25.
The second part of the reaction converts the isolable gem-dibromoalkene intermediate to the alkyne. Deuterium-labelling studies show that this step proceeds through a carbene mechanism. Lithium-Bromide exchange is followed by α-elimination to afford the carbene. 1,2-shift then affords the deuterium-labelled terminal alkyne. [3]
Additionally, LiOH fails to form the necessary adduct with alkynes to initiate the reaction. Hydroxide bases are inexpensive relative to generating an alkoxide or acetylide with reagents such as elemental lithium, sodium, or potassium. Additionally, the stringent reaction conditions used by most alternatives, such as excluding moisture and ...
The coupling of a terminal alkyne and an aromatic ring is the pivotal reaction when talking about applications of the copper-promoted or copper-free Sonogashira reaction. The list of cases where the typical Sonogashira reaction using aryl halides has been employed is large, and choosing illustrative examples is difficult.
In organic chemistry, the thiol-yne reaction (also known as alkyne hydrothiolation) is an organic reaction between a thiol (−SH) and an alkyne (−C≡CH). The reaction product is an alkenyl sulfide (−CH=CH−S−). [1] [2] The reaction was first reported in 1949 with thioacetic acid as reagent [3] [4] and rediscovered in 2009. [5]
[1] [2] The reaction product is a 1,3-diyne or di-alkyne. The reaction mechanism involves deprotonation by base of the terminal alkyne proton followed by formation of a copper(I) acetylide. A cycle of oxidative addition and reductive elimination on the copper centre then creates a new carbon-carbon bond.
The azide-alkyne Huisgen cycloaddition is a 1,3-dipolar cycloaddition between an azide and a terminal or internal alkyne to give a 1,2,3-triazole. Rolf Huisgen [ 1 ] was the first to understand the scope of this organic reaction .