Search results
Results from the WOW.Com Content Network
1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N. The amount of mass that can be lifted by helium in air at sea level is: (1.292 - 0.178) kg/m 3 = 1.114 kg/m 3. and the buoyant force for one m 3 of helium in air at sea level is: 1 m 3 × 1.114 kg/m 3 × 9.8 N/kg= 10.9 N. Thus hydrogen's additional buoyancy compared to helium is:
Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures.Liquid helium may show superfluidity.. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 K).
Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article. Exceptions are made if the unit is commonly known by another name (for example, 1 micron = 10 −6 metre).
Helium is a commonly used carrier gas for gas chromatography. The age of rocks and minerals that contain uranium and thorium can be estimated by measuring the level of helium with a process known as helium dating. [28] [30] Helium at low temperatures is used in cryogenics and in certain cryogenic applications.
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., Z n = 1 {\\displaystyle Z_{n}=1} ).
Helium-3 is an important isotope in instrumentation for neutron detection. It has a high absorption cross section for thermal neutron beams and is used as a converter gas in neutron detectors. The neutron is converted through the nuclear reaction n + 3 He → 3 H + 1 H + 0.764 MeV
Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note: 1 statute mile = 5,280 feet = 1,609 meters
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]