enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square.

  3. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n1, = + = for n ≥ 2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will ...

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...

  6. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    Chetwynd & Hilton (1985) show that if k ≥ 12n/7, then G is 1-factorable. The 1-factorization conjecture [3] is a long-standing conjecture that states that k ≈ n is sufficient. In precise terms, the conjecture is: If n is odd and k ≥ n, then G is 1-factorable. If n is even and k ≥ n1 then G is 1-factorable.

  7. Shanks's square forms factorization - Wikipedia

    en.wikipedia.org/wiki/Shanks's_square_forms...

    Finding a suitable pair (,) does not guarantee a factorization of , but it implies that is a factor of = (+), and there is a good chance that the prime divisors of are distributed between these two factors, so that calculation of the greatest common divisor of and will give a non-trivial factor of .

  8. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Consider any primitive solution (x, y, z) to the equation x n + y n = z n. The terms in (x, y, z) cannot all be even, for then they would not be coprime; they could all be divided by two. If x n and y n are both even, z n would be even, so at least one of x n and y n are odd. The remaining addend is either even or odd; thus, the parities of the ...

  9. Sudoku graph - Wikipedia

    en.wikipedia.org/wiki/Sudoku_graph

    Each row, column, or block of the Sudoku puzzle forms a clique in the Sudoku graph, whose size equals the number of symbols used to solve the puzzle. A graph coloring of the Sudoku graph using this number of colors (the minimum possible number of colors for this graph) can be interpreted as a solution to the puzzle.