Search results
Results from the WOW.Com Content Network
A variety of basic concepts is used in the study and analysis of logical reasoning. Logical reasoning happens by inferring a conclusion from a set of premises. [3] Premises and conclusions are normally seen as propositions. A proposition is a statement that makes a claim about what is the case.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule : when p =T (the hypothesis selects the first two lines of the table), we see (at column-14) that p ∨ q =T.
A premise or premiss [a] is a proposition—a true or false declarative statement—used in an argument to prove the truth of another proposition called the conclusion. [1] Arguments consist of a set of premises and a conclusion. An argument is meaningful for its conclusion only when all of its premises are true. If one or more premises are ...
A symbol or word used in logic to connect propositions or sentences, forming more complex expressions that convey relationships such as conjunction, disjunction, and negation. logical consequence A relationship between statements where the truth of one or more premises necessitates the truth of a conclusion, based on the logical structure of ...
Computational logic is the branch of logic and computer science that studies how to implement mathematical reasoning and logical formalisms using computers. This includes, for example, automatic theorem provers , which employ rules of inference to construct a proof step by step from a set of premises to the intended conclusion without human ...
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements.For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P.
That is, the word "valid" does not refer to the truth of the premises or the conclusion, but rather to the form of the inference. An inference can be valid even if the parts are false, and can be invalid even if some parts are true. But a valid form with true premises will always have a true conclusion.
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.