Search results
Results from the WOW.Com Content Network
Within aerobic respiration, the P/O ratio continues to be debated; however, current figures place it at 2.5 ATP per 1/2(O 2) reduced to water, though some claim the ratio is 3. [5] This figure arises from accepting that 10 H + are transported out of the matrix per 2 e − , and 4 H + are required to move inward to synthesize a molecule of ATP.
Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical ...
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...
Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...
ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane).
One ATP is invested in Step 1, and another ATP is invested in Step 3. Steps 1 and 3 of glycolysis are referred to as "Priming Steps". In Phase 2, two equivalents of g3p are converted to two pyruvates. In Step 7, two ATP are produced. Also, in Step 10, two further equivalents of ATP are produced. In Steps 7 and 10, ATP is generated from ADP.
This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c ...