Search results
Results from the WOW.Com Content Network
Pyruvate is an important chemical compound in biochemistry. It is the output of the metabolism of glucose known as glycolysis. [10] One molecule of glucose breaks down into two molecules of pyruvate, [10] which are then used to provide further energy, in one of two ways.
The pyruvate produced by glycolysis is an important intermediary in the conversion of carbohydrates into fatty acids and cholesterol. [46] This occurs via the conversion of pyruvate into acetyl-CoA in the mitochondrion. However, this acetyl CoA needs to be transported into cytosol where the synthesis of fatty acids and cholesterol occurs.
Pyruvate kinase is the enzyme involved in the last step of glycolysis.It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. [1]
Sodium pyruvate is a salt of the conjugate anion form of pyruvic acid, known as pyruvate. It is commonly added to cell culture media as an additional source of energy, but may also have protective effects against hydrogen peroxide. This was reported by Giandomenico et al. [1] and has been confirmed by several independent groups.
Pyruvate is oxidized to acetyl-CoA and CO 2 by the pyruvate dehydrogenase complex (PDC). The PDC contains multiple copies of three enzymes and is located in the mitochondria of eukaryotic cells and in the cytosol of prokaryotes. In the conversion of pyruvate to acetyl-CoA, one molecule of NADH and one molecule of CO 2 is formed. [11]
Pyruvate dehydrogenase complex. Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. [1] Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric ...
Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle. [4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle.
A pyruvate molecule is carboxylated by a pyruvate carboxylase enzyme, activated by a molecule each of ATP and water. This reaction results in the formation of oxaloacetate. NADH reduces oxaloacetate to malate. This transformation is needed to transport the molecule out of the mitochondria.