enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence. The formula was discovered independently by Leonhard Euler and Colin Maclaurin around 1735. Euler needed it to compute slowly converging infinite series while Maclaurin used it to calculate integrals.

  3. Euler summation - Wikipedia

    en.wikipedia.org/wiki/Euler_summation

    Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series. As well as being used to define values for divergent series, Euler summation can be used to speed the convergence of series. Euler summation can be generalized into a family of methods denoted (E, q), where q ≥ 0. The ...

  4. 1 − 2 + 3 − 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_3_%E2%88...

    This sum became an object of particular ridicule by Niels Henrik Abel in 1826: Divergent series are on the whole devil's work, and it is a shame that one dares to found any proof on them. One can get out of them what one wants if one uses them, and it is they which have made so much unhappiness and so many paradoxes.

  5. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Those methods work on oscillating divergent series, but they cannot produce a finite answer for a series that diverges to +∞. [6] Most of the more elementary definitions of the sum of a divergent series are stable and linear, and any method that is both stable and linear cannot sum 1 + 2 + 3 + ⋯ to a finite value (see § Heuristics below).

  6. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  7. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    It is almost certain that Euler meant that the sum of the reciprocals of the primes less than n is asymptotic to log log n as n approaches infinity. It turns out this is indeed the case, and a more precise version of this fact was rigorously proved by Franz Mertens in 1874. [3] Thus Euler obtained a correct result by questionable means.

  8. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    Both sides of the Euler product formula converge for Re(s) > 1. The proof of Euler's identity uses only the formula for the geometric series and the fundamental theorem of arithmetic. Since the harmonic series, obtained when s = 1, diverges, Euler's formula (which becomes Π p ⁠ p / p − 1 ⁠) implies that there are infinitely many primes. [5]

  9. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.