enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  3. Physical neural network - Wikipedia

    en.wikipedia.org/wiki/Physical_neural_network

    A physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. [1] "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based ...

  4. Quantum neural network - Wikipedia

    en.wikipedia.org/wiki/Quantum_neural_network

    A key difference lies in communication between the layers of a neural networks. For classical neural networks, at the end of a given operation, the current perceptron copies its output to the next layer of perceptron(s) in the network. However, in a quantum neural network, where each perceptron is a qubit, this would violate the no-cloning theorem.

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  6. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.

  7. Talk:Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Talk:Physics-informed...

    Hi!, interesting work! If I understood correctly, we should try to find a citation for each phrase that we write in a wiki article. Of course, this sometimes is not possible, but, for example, in the first two sections, there are some 'claims' about the performance improvement (for example) of this new technology, that I think is worth mentioning the source.

  8. Learning vector quantization - Wikipedia

    en.wikipedia.org/wiki/Learning_vector_quantization

    LVQ can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all Hebbian learning-based approach. It is a precursor to self-organizing maps (SOM) and related to neural gas and the k-nearest neighbor algorithm (k-NN). LVQ was invented by Teuvo Kohonen. [1]

  9. Interatomic potential - Wikipedia

    en.wikipedia.org/wiki/Interatomic_potential

    Conversely, message-passing neural networks (MPNNs), a form of graph neural networks, learn their own descriptors and symmetry encodings. They treat molecules as three-dimensional graphs and iteratively update each atom's feature vectors as information about neighboring atoms is processed through message functions and convolutions.