enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  3. Neural operators - Wikipedia

    en.wikipedia.org/wiki/Neural_operators

    In particular, physics-informed neural networks (PINNs) use complete physics laws to fit neural networks to solutions of PDEs. Extensions of this paradigm to operator learning are broadly called physics-informed neural operators (PINO), [ 14 ] where loss functions can include full physics equations or partial physical laws.

  4. Physical neural network - Wikipedia

    en.wikipedia.org/wiki/Physical_neural_network

    A physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. [1] "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based ...

  5. Machine learning in physics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in_physics

    Physics informed neural networks have been used to solve partial differential equations in both forward and inverse problems in a data driven manner. [36] One example is the reconstructing fluid flow governed by the Navier-Stokes equations.

  6. Reservoir computing - Wikipedia

    en.wikipedia.org/wiki/Reservoir_computing

    Reservoir computing is a framework for computation derived from recurrent neural network theory that maps input signals into higher dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir. [1]

  7. Frequency principle/spectral bias - Wikipedia

    en.wikipedia.org/wiki/Frequency_principle/...

    Multi-stage neural network: Multi-stage neural networks (MSNN) [13] use a superposition of DNNs, where sequential neural networks are optimized to fit the residuals from previous neural networks, boosting approximation accuracy. MSNNs have been applied to both regression problems and physics-informed neural networks, effectively addressing ...

  8. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    TFC achieves this by constructing a constrained functional (a function of a free function), that inherently satisfies given constraints regardless of the expression of the free function. This simplifies solving various types of equations and significantly improves the efficiency and accuracy of methods like Physics-Informed Neural Networks (PINNs).

  9. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.