Search results
Results from the WOW.Com Content Network
Whistles that generate sound through fluctuations of momentum or stress and strain of a force exerted on the surrounding medium are called dipole-like sources. The figure on the right is an example of a small rigid sphere that is moving back and forth in a given direction. This results in a non-uniform sound field.
These phenomena can potentially generate vibrations of the ferromagnetic, conductive parts, coils and permanent magnets of electrical, magnetic and electromechanical device, resulting in an audible sound if the frequency of vibrations lies between 20 Hz and 20 kHz, and if the sound level is high enough to be heard (e.g. large surface of ...
Sound waves may be viewed using parabolic mirrors and objects that produce sound. [9] The energy carried by an oscillating sound wave converts back and forth between the potential energy of the extra compression (in case of longitudinal waves) or lateral displacement strain (in case of transverse waves) of the matter, and the kinetic energy of ...
In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.
The fourth HS number describes instruments that make sound from matter in its gaseous state (air). The fifth HS number describes instruments that make sound from electricity and/or electrical energy. A number of instruments have been invented, designed, and made, that make sound from matter in its liquid state.
The sound of a sonic boom depends largely on the distance between the observer and the aircraft shape producing the sonic boom. A sonic boom is usually heard as a deep double "boom" as the aircraft is usually some distance away. The sound is much like that of mortar bombs, commonly used in firework displays. It is a common misconception that ...
Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.
A completely different approach to function generation is to use software instructions to generate a waveform, with provision for output. For example, a general-purpose digital computer can be used to generate the waveform; if frequency range and amplitude are acceptable, the sound card fitted to most computers can be used to output the generated wave.