enow.com Web Search

  1. Ad

    related to: linear programming how to solve 3 equations for a system calculator with solution

Search results

  1. Results from the WOW.Com Content Network
  2. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  3. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    A linear system in three variables determines a collection of planes. The intersection point is the solution. In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1] [2] For example,

  4. Solver - Wikipedia

    en.wikipedia.org/wiki/Solver

    Linear and non-linear equations. In the case of a single equation, the "solver" is more appropriately called a root-finding algorithm. Systems of linear equations. Nonlinear systems. Systems of polynomial equations, which are a special case of non linear systems, better solved by specific solvers. Linear and non-linear optimisation problems

  5. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope , which is a set defined as the intersection of finitely many half spaces , each of which is defined by a linear inequality.

  6. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  7. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming. [5 ...

  8. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...

  9. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations = by Gaussian elimination). Iterative methods are often the only choice for nonlinear equations. However, iterative methods are often useful even for linear problems involving many variables (sometimes on the ...

  1. Ad

    related to: linear programming how to solve 3 equations for a system calculator with solution