enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation .

  3. Numerical model of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Numerical_model_of_the...

    A numerical model of the Solar System is a set of mathematical equations, which, when solved, give the approximate positions of the planets as a function of time. Attempts to create such a model established the more general field of celestial mechanics. The results of this simulation can be compared with past measurements to check for accuracy ...

  4. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    In orbital mechanics, Kepler's equation relates various geometric properties of the orbit of a body subject to a central force. It was derived by Johannes Kepler in 1609 in Chapter 60 of his Astronomia nova , [ 1 ] [ 2 ] and in book V of his Epitome of Copernican Astronomy (1621) Kepler proposed an iterative solution to the equation.

  5. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Division by a 2 /2 gives Kepler's equation = ⁡. This equation gives M as a function of E. Determining E for a given M is the inverse problem. Iterative numerical algorithms are commonly used. Having computed the eccentric anomaly E, the next step is to calculate the true anomaly θ.

  6. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation . In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two ...

  7. Sphere of influence (astrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(astro...

    A sphere of influence (SOI) in astrodynamics and astronomy is the oblate spheroid-shaped region where a particular celestial body exerts the main gravitational influence on an orbiting object. This is usually used to describe the areas in the Solar System where planets dominate the orbits of surrounding objects such as moons , despite the ...

  8. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force that varies in strength as the inverse square of the distance between them. The force may be either attractive or repulsive.

  9. Mean anomaly - Wikipedia

    en.wikipedia.org/wiki/Mean_anomaly

    In celestial mechanics, the mean anomaly is the fraction of an elliptical orbit's period that has elapsed since the orbiting body passed periapsis, expressed as an angle which can be used in calculating the position of that body in the classical two-body problem.