Search results
Results from the WOW.Com Content Network
The plastic section modulus depends on the location of the plastic neutral axis (PNA). The PNA is defined as the axis that splits the cross section such that the compression force from the area in compression equals the tension force from the area in tension.
After a cross-section reaches a sufficiently high condition of plastic bending, it acts as a Plastic hinge. Elementary Elastic Bending theory requires that the bending stress varies linearly with distance from the neutral axis, but plastic bending shows a more accurate and complex stress distribution. The yielded areas of the cross-section will ...
Therefore the neutral axis lies on the centroid of the cross section. Note that the neutral axis does not change in length when under bending. It may seem counterintuitive at first, but this is because there are no bending stresses in the neutral axis. However, there are shear stresses (τ) in the neutral axis, zero in the middle of the span ...
For stresses that exceed yield, refer to article plastic bending. At yield, the maximum stress experienced in the section (at the furthest points from the neutral axis of the beam) is defined as the flexural strength. Consider beams where the following are true: The beam is originally straight and slender, and any taper is slight
An evenly loaded beam, bending (sagging) under load. The neutral plane is shown by the dotted line. In mechanics, the neutral plane or neutral surface is a conceptual plane within a beam or cantilever. When loaded by a bending force, the beam bends so that the inner surface is in compression and the outer surface is in tension.
Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [ 1 ] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
Here, is the distance from the neutral axis to a point of interest; and is the bending moment. Note that this equation implies that pure bending (of positive sign) will cause zero stress at the neutral axis, positive (tensile) stress at the "top" of the beam, and negative (compressive) stress at the bottom of the beam; and also implies that the ...
The parallel axis theorem can be used to determine the second moment of area of a rigid body about any axis, given the body's second moment of area about a parallel axis through the body's centroid, the area of the cross section, and the perpendicular distance (d) between the axes. ′ = +