Search results
Results from the WOW.Com Content Network
An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, []. In geometry , a diagonal matrix may be used as a scaling matrix , since matrix multiplication with it results in changing scale (size) and possibly also shape ; only a scalar matrix results in uniform change in scale.
A special case is a diagonal matrix, with arbitrary numbers ,, … along the diagonal: the axes of scaling are then the coordinate axes, and the transformation scales along each axis by the factor . In uniform scaling with a non-zero scale factor, all non-zero vectors retain their direction (as seen from the origin), or all have the direction ...
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
A scalar matrix is a diagonal matrix which is a constant times the identity matrix. The set of all nonzero scalar matrices forms a subgroup of GL(n, F) isomorphic to F ×. This group is the center of GL(n, F). In particular, it is a normal, abelian subgroup. The center of SL(n, F) is simply the set of all scalar matrices with unit determinant ...
As a special case, this includes: if some column is such that all its entries are zero, then the determinant of that matrix is 0. Adding a scalar multiple of one column to another column does not change the value of the determinant. This is a consequence of multilinearity and being alternative: by multilinearity the determinant changes by a ...
Thus, for example, the product of a 1 × n matrix and an n × 1 matrix, which is formally a 1 × 1 matrix, is often said to be a scalar. The real component of a quaternion is also called its scalar part. The term scalar matrix is used to denote a matrix of the form kI where k is a scalar and I is the identity matrix.
The Inverse Wishart distribution is a special case of the inverse matrix gamma distribution when the shape parameter = and the scale parameter =. Another generalization has been termed the generalized inverse Wishart distribution, G W − 1 {\displaystyle {\mathcal {GW}}^{-1}} .
It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...