Search results
Results from the WOW.Com Content Network
First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
Efforts to understand how proteins are encoded began after DNA's structure was discovered in 1953. The key discoverers, English biophysicist Francis Crick and American biologist James Watson, working together at the Cavendish Laboratory of the University of Cambridge, hypothesied that information flows from DNA and that there is a link between DNA and proteins. [2]
Since DNA is interpreted in groups of three nucleotides (codons), a DNA strand has three distinct reading frames. [15] The double helix of a DNA molecule has two anti-parallel strands; with the two strands having three reading frames each, there are six possible frame translations. [15] Example of a six-frame translation.
An open reading frame (ORF) is a reading frame that has the potential to be transcribed into RNA and translated into protein. It requires a continuous sequence of DNA which may include a start codon, through a subsequent region which has a length that is a multiple of 3 nucleotides, to a stop codon in the same reading frame.
In the context of translation, a termination signal is the stop codon on the mRNA that elicits the release of the growing peptide from the ribosome. [2] Termination signals play an important role in regulating gene expression since they mark the end of a gene transcript and determine which DNA sequences are expressed in the cell. [1]
The four bases found in DNA are adenine (A), cytosine (C), guanine (G) and thymine (T). These four bases are attached to the sugar-phosphate to form the complete nucleotide, as shown for adenosine monophosphate. Adenine pairs with thymine and guanine pairs with cytosine, forming A-T and G-C base pairs. [17] [18]
If it is found on the 5' side, it is called the 5' UTR (or leader sequence), or if it is found on the 3' side, it is called the 3' UTR (or trailer sequence). mRNA is RNA that carries information from DNA to the ribosome, the site of protein synthesis (translation) within a cell.