Search results
Results from the WOW.Com Content Network
In the NO − 3 anion, the oxidation state of the central nitrogen atom is V (+5). This corresponds to the highest possible oxidation number of nitrogen. Nitrate is a potentially powerful oxidizer as evidenced by its explosive behaviour at high temperature when it is detonated in ammonium nitrate (NH 4 NO 3), or black powder, ignited by the shock wave of a primary explosive.
Nitrogen trioxide or nitrate radical is an oxide of nitrogen with formula NO 3, consisting of three oxygen atoms covalently bound to a nitrogen atom. This highly unstable blue compound has not been isolated in pure form, but can be generated and observed as a short-lived component of gas, liquid, or solid systems.
NO y is the class of compounds comprising NO x and the NO z compounds produced from the oxidation of NO x which include nitric acid, nitrous acid (HONO), dinitrogen pentoxide (N 2 O 5), peroxyacetyl nitrate (PAN), alkyl nitrates (RONO 2), peroxyalkyl nitrates (ROONO 2), the nitrate radical (NO 3), and peroxynitric acid (HNO 4).
A nitrate test is a chemical test used to determine the presence of nitrate ion in solution. Testing for the presence of nitrate via wet chemistry is generally difficult compared with testing for other anions, as almost all nitrates are soluble in water.
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation (loss of electrons ) of an atom in a chemical compound .
Due to relatively weak N–O bonding, all nitrogen oxides are unstable with respect to N 2 and O 2, which is the principle behind the catalytic converter, and prevents the oxygen and nitrogen in the atmosphere from combusting.
Vanadyl nitrate, also called vanadium oxytrinitrate or vanadium oxynitrate is an inorganic compound of vanadium in the +5 oxidation state with nitrate ligands and oxygen. The formula is VO(NO 3 ) 3 . It is a pale yellow viscous liquid.
These include methods that can destroy nitrogen compounds, such as chemical and electrochemical methods, and those that selectively transfer nitrate to a concentrated waste stream, such as ion exchange or reverse osmosis. Chemical removal of nitrate can occur through advanced oxidation processes, although it may produce hazardous byproducts. [38]