Search results
Results from the WOW.Com Content Network
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
For example, in an exchangeable correlation matrix, all pairs of variables are modeled as having the same correlation, so all non-diagonal elements of the matrix are equal to each other. On the other hand, an autoregressive matrix is often used when variables represent a time series, since correlations are likely to be greater when measurements ...
The coefficient of multiple correlation is known as the square root of the coefficient of determination, but under the particular assumptions that an intercept is included and that the best possible linear predictors are used, whereas the coefficient of determination is defined for more general cases, including those of nonlinear prediction and those in which the predicted values have not been ...
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. [citation needed]
Another choice is the tetrachoric correlation coefficient but it is only applicable to 2 × 2 tables. Polychoric correlation is an extension of the tetrachoric correlation to tables involving variables with more than two levels. Tetrachoric correlation assumes that the variable underlying each dichotomous measure is normally distributed. [5]
For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram . The correlogram is a commonly used tool for checking randomness in a data set .
In this definition, it has been assumed that the stochastic variables are scalar-valued. If they are not, then more complicated correlation functions can be defined. For example, if X(s) is a random vector with n elements and Y(t) is a vector with q elements, then an n×q matrix of correlation functions is defined with , element
If F(r) is the Fisher transformation of r, the sample Spearman rank correlation coefficient, and n is the sample size, then z = n − 3 1.06 F ( r ) {\displaystyle z={\sqrt {\frac {n-3}{1.06}}}F(r)} is a z -score for r , which approximately follows a standard normal distribution under the null hypothesis of statistical independence ( ρ = 0 ).