Search results
Results from the WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
A graph of a parabola with a removable singularity at x = 2 In complex analysis , a removable singularity of a holomorphic function is a point at which the function is undefined , but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
A removable discontinuity occurs when () = (+), also regardless of whether () is defined, and regardless of its value if it is defined (but which does not match that of the two limits). A type II discontinuity occurs when either f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist (possibly both).
Singularity functions have been heavily studied in the field of mathematics under the alternative names of generalized functions and distribution theory. [ 1 ] [ 2 ] [ 3 ] The functions are notated with brackets, as x − a n {\displaystyle \langle x-a\rangle ^{n}} where n is an integer.
This operation will remove removable discontinuities and fix reparable holes. One would expect such an operation to have been discussed in the literature – although I'm unaware of any instances. --Lambiam 11:25, 10 October 2007 (UTC) Calling the use of the term removable discontinuity improper is POV.
Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]
Plot of the function exp(1/z), centered on the essential singularity at z = 0.The hue represents the complex argument, the luminance represents the absolute value.This plot shows how approaching the essential singularity from different directions yields different behaviors (as opposed to a pole, which, approached from any direction, would be uniformly white).
This page was last edited on 10 January 2015, at 10:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.