Search results
Results from the WOW.Com Content Network
Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. [1] [2] Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes (e.g. morphological, physiological, behavioural, phenological) that may or may not be ...
A phenotypic trait is an obvious, observable, and measurable characteristic of an organism; it is the expression of genes in an observable way. An example of a phenotypic trait is a specific hair color or eye color. Underlying genes, that make up the genotype, determine the hair color, but the hair color observed is the phenotype.
The trait's frequency expands in the population, creating a population on which selection can act. Pre-existing (background) genetic variation in other genes results in phenotypic differences in expression of the new trait. These phenotypic differences undergo selection; as genotypic differences narrow, the trait becomes:
More recently, large-scale phenotypic screens have also been used in animals, e.g. to study lesser understood phenotypes such as behavior. In one screen, the role of mutations in mice were studied in areas such as learning and memory , circadian rhythmicity , vision, responses to stress and response to psychostimulants .
Selective breeding (also called artificial selection) is the process by which humans use animal breeding and plant breeding to selectively develop particular phenotypic traits (characteristics) by choosing which typically animal or plant males and females will sexually reproduce and have offspring together.
For example, horn size, meat quality, gait, and prenatal growth in cattle all have single genes found to be responsible for these phenotypic traits. [ 25 ] Specific regions of DNA, such as quantitative trait loci (QTL) , include genes affecting observable traits and thus have statistically detectable associations with those traits.
Genetic architecture is the underlying genetic basis of a phenotypic trait and its variational properties. [1] Phenotypic variation for quantitative traits is, at the most basic level, the result of the segregation of alleles at quantitative trait loci (QTL). [2]
One of the objectives of the OMIA is to match genotypes to phenotypes. Lenffer et al. (2006) describe the OMIA as a "comparative biology resource" "(The) OMIA is a comprehensive resource of phenotypic information on heritable animal traits and genes in a strongly comparative context, relating traits to genes where possible.