Search results
Results from the WOW.Com Content Network
Arthur Moritz Schoenflies (German: [ˈʃøːnfliːs]; 17 April 1853 – 27 May 1928), sometimes written as Schönflies, was a German mathematician, known for his contributions to the application of group theory to crystallography, and for work in topology.
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule , the notation is often sufficient and commonly used for spectroscopy .
There are 3 types of dihedral symmetry in three dimensions, each shown below in 3 notations: Schönflies notation, Coxeter notation, and orbifold notation. Chiral. D n, [n,2] +, (22n) of order 2n – dihedral symmetry or para-n-gonal group (abstract group: Dih n).
The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form Γ x y {\displaystyle \Gamma _{x}^{y}} which specifies the Bravais lattice.
Schoenflies (or Schönflies) displacement (or motion) named after Arthur Moritz Schoenflies is a rigid body motion consisting of linear motion in three dimensional space plus one orientation around an axis with fixed direction. [1]
The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).
The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file