Search results
Results from the WOW.Com Content Network
Some viruses can "hide" within a cell, which may mean that they evade the host cell defenses or immune system and may increase the long-term "success" of the virus. This hiding is deemed latency. During this time, the virus does not produce any progeny, it remains inactive until external stimuli—such as light or stress—prompts it to activate.
Viruses are able to initiate infection, disperse throughout the body, and replicate due to specific virulence factors. [2] There are several factors that affect pathogenesis. Some of these factors include virulence characteristics of the virus that is infecting.
Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. [1] [2] Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates (on the order of one point mutation or more per genome per round of replication).
New groups of viruses might have repeatedly emerged at all stages of the evolution of life. [16] There are three major theories about the origins of viruses: [16] [17] Regressive theory Viruses may have once been small cells that parasitised larger cells. Eventually, the genes they no longer needed for a parasitic way of life were lost.
Viral transformation is the change in growth, phenotype, or indefinite reproduction of cells caused by the introduction of inheritable material. Through this process, a virus causes harmful transformations of an in vivo cell or cell culture. The term can also be understood as DNA transfection using a viral vector. Figure 1: Hepatitis-B virions
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. [1] Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. [2] [3] Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity.
Viruses may undergo two types of life cycles: the lytic cycle and the lysogenic cycle. In the lytic cycle, the virus introduces its genome into a host cell and initiates replication by hijacking the host's cellular machinery to make new copies of the virus. [12] In the lysogenic life cycle, the viral genome is incorporated into the host genome.
Viruses infect all life forms; therefore the bacterial, plant, and animal cells and material in the gut also carry viruses. [6] When viruses cause harm by infecting the cells in the body, a symptomatic disease may develop. Contrary to common belief, harmful viruses may be in the minority, compared to benign viruses in the human body.