enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  3. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity.

  4. Spring system - Wikipedia

    en.wikipedia.org/wiki/Spring_system

    A spring system can be thought of as the simplest case of the finite element method for solving problems in statics. Assuming linear springs and small deformation (or restricting to one-dimensional motion) a spring system can be cast as a (possibly overdetermined) system of linear equations or equivalently as an energy minimization problem.

  5. Standard linear solid model - Wikipedia

    en.wikipedia.org/wiki/Standard_Linear_Solid_model

    Connecting a spring and damper in series yields a model of a Maxwell material while connecting a spring and damper in parallel yields a model of a Kelvin–Voigt material. [2] In contrast to the Maxwell and Kelvin–Voigt models, the SLS is slightly more complex, involving elements both in series and in parallel.

  6. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  7. Maxwell material - Wikipedia

    en.wikipedia.org/wiki/Maxwell_material

    Diagram of a Maxwell material. The Maxwell model is represented by a purely viscous damper and a purely elastic spring connected in series, [4] as shown in the diagram. If, instead, we connect these two elements in parallel, [4] we get the generalized model of a solid Kelvin–Voigt material.

  8. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...

  9. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.