Search results
Results from the WOW.Com Content Network
The semi-Fibonacci sequence (sequence A030067 in the OEIS) is defined via the same recursion for odd-indexed terms (+) = + and () =, but for even indices () = (), . The bisection A030068 of odd-indexed terms s ( n ) = a ( 2 n − 1 ) {\displaystyle s(n)=a(2n-1)} therefore verifies s ( n + 1 ) = s ( n ) + a ( n ) {\displaystyle s(n+1)=s(n)+a(n ...
In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .
Recursion allows direct implementation of functionality defined by mathematical induction and recursive divide and conquer algorithms. Here is an example of a recursive function in C/C++ to find Fibonacci numbers:
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...
Then, we can ask the question: Given fib[3], what is the sequence of recursive Fibonacci calls? Trace [ fib [ 3 ], fib [ _ ]] returns a structure that represents the occurrences of the pattern fib[_] in the computational structure:
Recursive drawing of a SierpiĆski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...
Thus it suffices to compute Pisano periods for prime powers =. (Usually, () = (), unless p is k-Wall–Sun–Sun prime, or k-Fibonacci–Wieferich prime, that is, p 2 divides F k (p − 1) or F k (p + 1), where F k is the k-Fibonacci sequence, for example, 241 is a 3-Wall–Sun–Sun prime, since 241 2 divides F 3 (242).)
To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).