enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.

  3. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    Publication by C. F. Gauss in Intelligenzblatt der allgemeinen Literatur-Zeitung. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1]

  4. 65537-gon - Wikipedia

    en.wikipedia.org/wiki/65537-gon

    The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).

  5. 257-gon - Wikipedia

    en.wikipedia.org/wiki/257-gon

    The regular 257-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 257 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 3).

  6. Pentadecagon - Wikipedia

    en.wikipedia.org/wiki/Pentadecagon

    As 15 = 3 × 5, a product of distinct Fermat primes, a regular pentadecagon is constructible using compass and straightedge: The following constructions of regular pentadecagons with given circumcircle are similar to the illustration of the proposition XVI in Book IV of Euclid's Elements.

  7. Category:Constructible polygons - Wikipedia

    en.wikipedia.org/.../Category:Constructible_polygons

    Articles related to constructible regular polygons, i.e. those amenable to compass and straightedge construction. Carl Friedrich Gauss proved that a regular polygon is constructible if its number of sides has no odd prime factors that are not Fermat primes, and no odd prime factors that are raised to a power of 2 or higher.

  8. Triacontagon - Wikipedia

    en.wikipedia.org/wiki/Triacontagon

    The regular triacontagon is a constructible polygon, by an edge-bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t{15}. A truncated triacontagon, t{30}, is a hexacontagon, {60}. One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°.

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    An n-sided regular polygon can be constructed with compass and straightedge if and only if n is either a power of 2 or the product of a power of 2 and distinct Fermat primes: in other words, if and only if n is of the form n = 2 k or n = 2 k p 1 p 2...p s, where k, s are nonnegative integers and the p i are distinct Fermat primes.