Search results
Results from the WOW.Com Content Network
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
There is no corresponding upper bound as any of the 3 fractions in the inequality can be made arbitrarily large. It is the three-variable case of the rather more difficult Shapiro inequality, and was published at least 50 years earlier.
Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality. As a simple example, consider real numbers : By applying with := for all =, …,, it follows that + + + + + + for every permutation of , …,.
The inequality was first proven by Grönwall in 1919 (the integral form below with α and β being constants). [1] Richard Bellman proved a slightly more general integral form in 1943. [2] A nonlinear generalization of the Grönwall–Bellman inequality is known as Bihari–LaSalle inequality. Other variants and generalizations can be found in ...
A great many important inequalities in information theory are actually lower bounds for the Kullback–Leibler divergence.Even the Shannon-type inequalities can be considered part of this category, since the interaction information can be expressed as the Kullback–Leibler divergence of the joint distribution with respect to the product of the marginals, and thus these inequalities can be ...
where denotes the vector (x 1, x 2). In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint.