Search results
Results from the WOW.Com Content Network
For acid–base reactions, the equivalent weight of an acid or base is the mass which supplies or reacts with one mole of hydrogen cations (H +). For redox reactions, the equivalent weight of each reactant supplies or reacts with one mole of electrons (e −) in a redox reaction. [3]
An equivalent (symbol: officially equiv; [1] unofficially but often Eq [2]) is the amount of a substance that reacts with (or is equivalent to) an arbitrary amount (typically one mole) of another substance in a given chemical reaction. It is an archaic quantity that was used in chemistry and the biological sciences (see Equivalent weight § In ...
Normality can be used for acid-base titrations. For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be ...
V eq is the volume of titrant (ml) consumed by the crude oil sample and 1 ml of spiking solution at the equivalent point, b eq is the volume of titrant (ml) consumed by 1 ml of spiking solution at the equivalent point, 56.1 g/mol is the molecular weight of KOH, W oil is the mass of the sample in grams. The normality (N) of titrant is calculated as:
battery, Lead–acid [23] 0.14: 0.36: battery, Vanadium redox: 0.09 [citation needed] 0.1188: 70-75% battery, Vanadium–Bromide redox: 0.18: 0.252: 80%–90% [32] Capacitor Ultracapacitor: 0.0199 [33] 0.050 [citation needed] Capacitor Supercapacitor: 0.01 [citation needed] 80%–98.5% [34] 39%–70% [34] Superconducting magnetic energy storage ...
The epoxy value is defined as the number of moles of epoxy group per 100g resin. So as an example using an epoxy resin with molar mass of 382 and that has 2 moles of epoxy groups per mole of resin, the EEW = 382/2 = 191, and the epoxy value is calculated as follows: 100/191 = 0.53 (i.e. the epoxy value of the resin is 0.53). [6]
Where HV is the hydroxyl value; V B is the amount (ml) potassium hydroxide solution required for the titration of the blank; V acet is the amount (ml) of potassium hydroxide solution required for the titration of the acetylated sample; W acet is the weight of the sample (in grams) used for acetylation; N is the normality of the titrant; 56.1 is ...
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.