enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian product - Wikipedia

    en.wikipedia.org/wiki/Cartesian_product

    The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards.

  3. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  4. Product (category theory) - Wikipedia

    en.wikipedia.org/wiki/Product_(category_theory)

    In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.

  5. Ternary relation - Wikipedia

    en.wikipedia.org/wiki/Ternary_relation

    Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs , i.e. a subset of the Cartesian product A × B of some sets A and B , so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A , B and C .

  6. Product order - Wikipedia

    en.wikipedia.org/wiki/Product_order

    The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]

  7. Cartesian closed category - Wikipedia

    en.wikipedia.org/wiki/Cartesian_closed_category

    If G is a group, then the category of all G-sets is Cartesian closed. If Y and Z are two G-sets, then Z Y is the set of all functions from Y to Z with G action defined by (g.F)(y) = g.F(g −1.y) for all g in G, F:Y → Z and y in Y. The subcategory of finite G-sets is also Cartesian closed.

  8. Product category - Wikipedia

    en.wikipedia.org/wiki/Product_category

    In the mathematical field of category theory, the product of two categories C and D, denoted C × D and called a product category, is an extension of the concept of the Cartesian product of two sets. Product categories are used to define bifunctors and multifunctors .

  9. Algebraic data type - Wikipedia

    en.wikipedia.org/wiki/Algebraic_data_type

    The set of all possible values of a product type is the set-theoretic product, i.e., the Cartesian product, of the sets of all possible values of its field types. The values of a sum type are typically grouped into several classes, called variants. A value of a variant type is usually created with a quasi-functional entity called a constructor ...