Search results
Results from the WOW.Com Content Network
The continuous stirred-tank reactor (CSTR), also known as vat-or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering. A CSTR often refers to a model used to estimate the key unit operation variables when using ...
Each plug of differential volume is considered as a separate entity, effectively an infinitesimally small continuous stirred tank reactor, limiting to zero volume. As it flows down the tubular PFR, the residence time ( τ {\displaystyle \tau } ) of the plug is a function of its position in the reactor.
For a continuous stirred-tank reactor (CSTR), the following relationship applies: [1] [2] = where: is the reactor volume; is the molar flow rate per unit time of the entering reactant A
The concept of residence time originated in models of chemical reactors. The first such model was an axial dispersion model by Irving Langmuir in 1908. This received little attention for 45 years; other models were developed such as the plug flow reactor model and the continuous stirred-tank reactor, and the concept of a washout function (representing the response to a sudden change in the ...
Attainable region (AR) theory is a branch of chemical engineering, specifically chemical reaction engineering, that uses geometric and mathematical optimization concepts to assist in the design of networks of chemical reactors. AR theory is a method to help define the best reactor flowsheet using graphical techniques for a desired duty or ...
As can be seen, as the Damköhler number increases, the other term must decrease. The ensuing polynomial can be solved and the conversion for the rule of thumb Damköhler numbers found. Alternatively, one can graph the expressions and see where they intersect with the line given by the inverse Damköhler number to see the solution for conversion.
Mixing of liquids occurs frequently in process engineering. The nature of liquids to blend determines the equipment used. Single-phase blending tends to involve low-shear, high-flow mixers to cause liquid engulfment, while multi-phase mixing generally requires the use of high-shear, low-flow mixers to create droplets of one liquid in laminar, turbulent or transitional flow regimes, depending ...
Cut-away view of a stirred-tank chemical reactor with a cooling jacket Chemical reactor with half coils wrapped around it. The most common basic types of chemical reactors are tanks (where the reactants mix in the whole volume) and pipes or tubes (for laminar flow reactors and plug flow reactors)