Search results
Results from the WOW.Com Content Network
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. [1] The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to ...
The Hough transform as it is universally used today was invented by Richard Duda and Peter Hart in 1972, who called it a "generalized Hough transform" [3] after the related 1962 patent of Paul Hough. [ 4 ] [ 5 ] The transform was popularized in the computer vision community by Dana H. Ballard through a 1981 journal article titled " Generalizing ...
The Hough transform [3] can be used to detect lines and the output is a parametric description of the lines in an image, for example ρ = r cos(θ) + c sin(θ). [1] If there is a line in a row and column based image space, it can be defined ρ, the distance from the origin to the line along a perpendicular to the line, and θ, the angle of the perpendicular projection from the origin to the ...
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) [1] The basic idea of Hough transform (HT) is to implement a voting ...
Then no measure which vanishes at points on Z is a Radon measure, since any compact set in Z is countable. Standard product measure on (0, 1) κ for uncountable κ is not a Radon measure, since any compact set is contained within a product of uncountably many closed intervals, each of which is shorter than 1.
Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
In mathematics, the X-ray transform (also called ray transform [1] or John transform) is an integral transform introduced by Fritz John in 1938 [2] that is one of the cornerstones of modern integral geometry. It is very closely related to the Radon transform, and coincides with it in two dimensions.
The Lebesgue–Stieltjes integral ()is defined when : [,] is Borel-measurable and bounded and : [,] is of bounded variation in [a, b] and right-continuous, or when f is non-negative and g is monotone and right-continuous.