enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-reaction - Wikipedia

    en.wikipedia.org/wiki/Half-reaction

    For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...

  3. Latimer diagram - Wikipedia

    en.wikipedia.org/wiki/Latimer_diagram

    Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction. The sum of the Gibbs energy changes for subsequent reductions (e.g. from O 2 to H 2 O 2, then from H 2 O 2 to H 2 O) is the same as the Gibbs energy change for the overall reduction (i.e. from O 2 to H 2 O), in accordance ...

  4. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. Reducing agent - Wikipedia

    en.wikipedia.org/wiki/Reducing_agent

    In the above equation, the Iron (Fe) has an oxidation number of 0 before and 3+ after the reaction. For oxygen (O) the oxidation number began as 0 and decreased to 2−. These changes can be viewed as two "half-reactions" that occur concurrently: Oxidation half reaction: Fe 0 → Fe 3+ + 3e −; Reduction half reaction: O 2 + 4e − → 2 O 2−

  7. Frost diagram - Wikipedia

    en.wikipedia.org/wiki/Frost_diagram

    Oxidation states are unitless and are also scaled in positive and negative integers. Most often, the Frost diagram displays oxidation state in increasing order, but in some cases it is displayed in decreasing order. The neutral species of the pure element with a free energy of zero (nE° = 0) also has an oxidation state equal to zero. [2]

  8. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    The number indicates the degree of oxidation of each element caused by molecular bonding. In ionic compounds, the oxidation numbers are the same as the element's ionic charge. Thus for KCl, potassium is assigned +1 and chlorine is assigned -1. [4] The complete set of rules for assigning oxidation numbers are discussed in the following sections.

  9. Disproportionation - Wikipedia

    en.wikipedia.org/wiki/Disproportionation

    The chlorine reactant is in oxidation state 0. In the products, the chlorine in the Cl − ion has an oxidation number of −1, having been reduced, whereas the oxidation number of the chlorine in the ClO − 3 ion is +5, indicating that it has been oxidized. Decomposition of numerous interhalogen compounds involve disproportionation.

  1. Related searches change in oxidation number calculator wolfram series worksheet solutions

    oxidizer equationoxidation and reduction half reaction
    zn oxidation half reactionzn anode oxidation