enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    An N-point DFT is expressed as the multiplication =, where is the original input signal, is the N-by-N square DFT matrix, and is the DFT of the signal. The transformation matrix W {\displaystyle W} can be defined as W = ( ω j k N ) j , k = 0 , … , N − 1 {\displaystyle W=\left({\frac {\omega ^{jk}}{\sqrt {N}}}\right)_{j,k=0,\ldots ,N-1 ...

  3. Eight-point algorithm - Wikipedia

    en.wikipedia.org/wiki/Eight-point_algorithm

    The eight-point algorithm is an algorithm used in computer vision to estimate the essential matrix or the fundamental matrix related to a stereo camera pair from a set of corresponding image points. It was introduced by Christopher Longuet-Higgins in 1981 for the case of the essential matrix.

  4. Discrete Fourier transform over a ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform...

    One can ask whether the DFT matrix is unitary over a finite field. If the matrix entries are over F q {\displaystyle F_{q}} , then one must ensure q {\displaystyle q} is a perfect square or extend to F q 2 {\displaystyle F_{q^{2}}} in order to define the order two automorphism x ↦ x q {\displaystyle x\mapsto x^{q}} .

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    The spectral sequences at (a) upper right and (b) lower right are respectively computed from (a) one cycle of the periodic summation of s(t) and (b) one cycle of the periodic summation of the s(nT) sequence. The respective formulas are (a) the Fourier series integral and (b) the DFT summation. Its similarities to the original transform, S(f ...

  6. Fast Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Fourier_transform

    The development of fast algorithms for DFT can be traced to Carl Friedrich Gauss's unpublished 1805 work on the orbits of asteroids Pallas and Juno.Gauss wanted to interpolate the orbits from sample observations; [6] [7] his method was very similar to the one that would be published in 1965 by James Cooley and John Tukey, who are generally credited for the invention of the modern generic FFT ...

  7. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    Both transforms are invertible. The inverse DTFT reconstructs the original sampled data sequence, while the inverse DFT produces a periodic summation of the original sequence. The Fast Fourier Transform (FFT) is an algorithm for computing one cycle of the DFT, and its inverse produces one cycle of the inverse DFT.

  8. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    When the DFT is used for spectral analysis, the {x n} sequence usually represents a finite set of uniformly spaced time-samples of some signal x(t) where t represents time. The conversion from continuous time to samples (discrete-time) changes the underlying Fourier transform of x ( t ) into a discrete-time Fourier transform (DTFT), which ...

  9. Chirp Z-transform - Wikipedia

    en.wikipedia.org/wiki/Chirp_Z-transform

    where A is the complex starting point, W is the complex ratio between points, and M is the number of points to calculate. Like the DFT, the chirp Z-transform can be computed in O(n log n) operations where = (,). An O(N log N) algorithm for the inverse chirp Z-transform (ICZT) was described in 2003, [4] [5] and in 2019. [6]