Search results
Results from the WOW.Com Content Network
Pure silicon is an intrinsic semiconductor, which means that unlike metals, it conducts electron holes and electrons released from atoms by heat; silicon's electrical conductivity increases with higher temperatures. Pure silicon has too low a conductivity (i.e., too high a resistivity) to be used as a
Electrical conductivity of water samples is used as an indicator of how salt-free, ion-free, or impurity-free the sample is; the purer the water, the lower the conductivity (the higher the resistivity). Conductivity measurements in water are often reported as specific conductance, relative to the conductivity of pure water at 25 °C.
The conductivity of silicon is increased by adding a small amount (of the order of 1 in 10 8) of pentavalent (antimony, phosphorus, or arsenic) or trivalent (boron, gallium, indium) atoms. [3] This process is known as doping, and the resulting semiconductors are known as doped or extrinsic semiconductors. Apart from doping, the conductivity of ...
When the electron in pure silicon crosses the gap, it leaves behind an electron vacancy or "hole" in the regular silicon lattice. Under the influence of an external voltage, both the electron and the hole can move across the material. In an n-type semiconductor, the dopant contributes extra electrons, dramatically increasing the conductivity.
For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...
These thermal greases have low electrical conductivity and their volume resistivities are 1.5⋅10 15, 1.8⋅10 11, and 9.9⋅10 9 Ω⋅cm for 860, 8616 and 8617 respectively. The thermal grease 860 is a silicone oil with a Zinc Oxide filler and 8616 and 8617 are synthetic oils with various fillers including Aluminum Oxide and Boron Nitride.
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.