Search results
Results from the WOW.Com Content Network
The primary facility for accessing the values of the elements of an array is the array subscript operator. To access the i-indexed element of array, the syntax would be array[i], which refers to the value stored in that array element. Array subscript numbering begins at 0 (see Zero-based indexing). The largest allowed array subscript is ...
c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also ...
Off-side rule languages: Boo, Cobra, CoffeeScript, F#, Haskell (in do-notation when braces are omitted), LiveScript, occam, Python, Nemerle (Optional; the user may use white-space sensitive syntax instead of the curly-brace syntax if they so desire), Nim, Scala (Optional, as in Nemerle)
Indexes are also called subscripts. An index maps the array value to a stored object. There are three ways in which the elements of an array can be indexed: 0 (zero-based indexing) The first element of the array is indexed by subscript of 0. [8] 1 (one-based indexing) The first element of the array is indexed by subscript of 1. n (n-based indexing)
Abstractly, an array reference is a procedure of two arguments: an array and a subscript vector, which could be expressed as get_array(Array, vector(i,j)). Instead, many languages provide syntax such as Array[i,j]. Similarly an array element update is a procedure consisting of three arguments, for example set_array(Array, vector(i,j), value ...
In contrast, a character entity reference refers to a character by the name of an entity which has the desired character as its replacement text. The entity must either be predefined (built into the markup language) or explicitly declared in a Document Type Definition (DTD). The format is the same as for any entity reference: &name;
In object-oriented languages, string functions are often implemented as properties and methods of string objects. In functional and list-based languages a string is represented as a list (of character codes), therefore all list-manipulation procedures could be considered string functions.
For example, in the Pascal programming language, the declaration type MyTable = array [1.. 4, 1.. 2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.