Search results
Results from the WOW.Com Content Network
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms.
Most preprocessors are specific to a particular data processing task (e.g., compiling the C language). A preprocessor may be promoted as being general purpose , meaning that it is not aimed at a specific usage or programming language, and is intended to be used for a wide variety of text processing tasks.
Core Python Programming is a textbook on the Python programming language, written by Wesley J. Chun. The first edition of the book was released on December 14, 2000. [1] The second edition was released several years later on September 18, 2006. [2] Core Python Programming is mainly targeted at higher education students and IT professionals. [3]
Neural networks in general are operating with a data pre-processing step, in which the features are converted into normalized values between 0 and 1. An ANFIS neural network doesn't need a sigmoid function , but it's doing the preprocessing step by converting numeric values into fuzzy values.